

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

November 2011

Assessment Task 1 Year 11

Mathematics Extension

General Instructions

- Reading Time 5 Minutes
- Working time 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- Marks may **NOT** be awarded for messy or badly arranged work.
- All necessary working should be shown in every question if full marks are to be awarded.
- Answer in simplest exact form unless otherwise instructed.

Total Marks – 65

- Attempt sections A D.
- Start each **NEW** section in a separate answer booklet.
- Hand in your answers in 4 separate bundles:

Section A
Section B
Section C
Section D

Examiner: J. Chen

This is an assessment task only and does not necessarily reflect the content or format of the Higher School Certificate

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, n \neq -1; x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, a \neq 0$$

$$\int \sec^2 ax dx = \frac{1}{a} \tan ax,$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, a > 0, -a < x < a$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2}\right), x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2}\right)$$
NOTE:
$$\ln x = \log_e x, x > 0$$

SECTION A [15 marks]

For these 10 questions there is one correct answer per question. Write down in your answer booklet the question number and letter of your answer. 1.

$$\int \frac{1}{(1-2x)^3} \, dx$$

(a)
$$-\frac{1}{4(1-2x)^2} + C$$

(b)
$$\frac{1}{4(1-2x)^2} + C$$

(c)
$$-\frac{1}{2(1-2x)^2} + C$$

(d)
$$\frac{1}{2(1-2x)^2} + C$$

- 2. Find the acute angle between the lines x + 3y = 0 and x 2y = 1. [1]
 - (a) 135°
 - (b) 45°
 - (c) 22.5°
 - (d) None of the above
- 3. Solve $\cos\left(x \frac{\pi}{6}\right) = \frac{\sqrt{3}}{2}$, for $0 \le x \le 2\pi$. (a) $x = 0, \frac{\pi}{3}, 2\pi$ (b) $x = \frac{\pi}{6}, \frac{11\pi}{6}$
 - (c) $x = \frac{\pi}{3}, 2\pi$
 - (d) $x = \pi, \frac{4\pi}{3}$
- 4. P and Q are the points (-4, 3) and (2, 1) respectively. What are the coordinates of the point M which divides QP externally in the ratio 4:5.
 - (a) M(26, -7)
 - (b) M(31, -3)
 - (c) $M\left(-\frac{2}{3},\frac{17}{9}\right)$
 - (d) M(-28, 11)

Marks

[1]

[1]

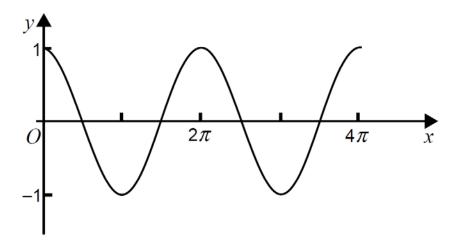
- 5. What is the exact value of $\tan 15^\circ$?
 - (a) $\frac{\sqrt{3}-1}{\sqrt{3}+1}$ (b) $\frac{\sqrt{3}+1}{\sqrt{3}-1}$

(c)
$$\frac{1-\sqrt{3}}{1+\sqrt{3}}$$

(d)
$$\frac{1+\sqrt{3}}{1-\sqrt{3}}$$

6. Part of the graph of a trigonometric function is shown below.

[1]



A possible equation for the function is

- (a) $y = \cos(2x)$
- (b) $y = \cos x$
- (c) $y = \sin(2x)$

(d)
$$y = \sin x$$

- 7. The linear factors of $x^4 + x^3 3x^2 3x$ are
 - (a) $x, x + \sqrt{3}, x \sqrt{3}$
 - (b) x + 1, $x + \sqrt{3}$, $x \sqrt{3}$
 - (c) x, x + 1
 - (d) x, x + 1, $x + \sqrt{3}$, $x \sqrt{3}$

8. A continuous function f(x) has the following properties.

$$f(0) = 0$$

$$f(-3) = 0$$

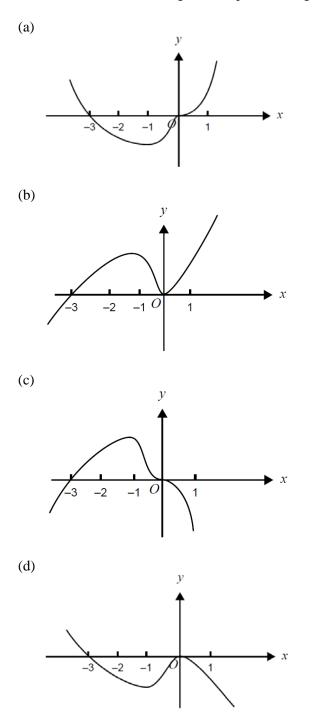
$$f'(0) = 0$$

$$f'(-1) = 0$$

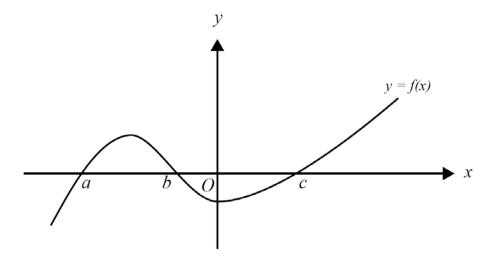
$$f'(x) > 0 \text{ for } x < -1$$

$$f'(x) < 0 \text{ for } x > -1, \ x \neq 0$$

Which one of the following could represent the graph of f(x)?



9. The diagram below shows part of the graph of a function y = f(x).



The total area bounded by the function y = f(x) and the x-axis between x = aand x = c is given by

(a)
$$\int_{a}^{c} f(x) dx$$

(b) $\int_{a}^{b} f(x) dx + \int_{c}^{b} f(x) dx$
(c) $\int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$
(d) $\int_{b}^{c} f(x) dx - \int_{a}^{b} f(x) dx$
10. If $\int_{0}^{4} f(x) dx = 3$, then $\int_{0}^{4} (3f(x) - 2) dx$ is equal to
(a) 9
(b) 1
(c) 7

(d) 3

End of Multiple Choice Section

[1]

- 11. Find all angles θ for which $\tan \theta = \sqrt{3}$.
- 12. Sketch the graph of a function y = f(x) such that $\frac{dy}{dx} < 0$ and $\frac{d^2y}{dx^2} > 0$ [2] for $0 \le x \le 2$.

[1]

[2]

13. Prove that

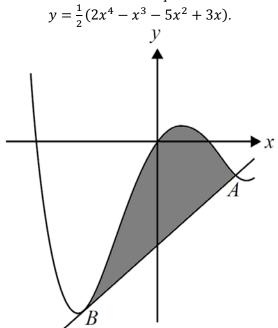
$$(\cot\theta + \csc\theta)^2 = \frac{1 + \cos\theta}{1 - \cos\theta}$$

End of Section A

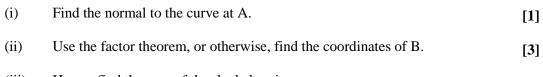
SECTION B [20 marks]

1. Solve $\cos \theta = \frac{1}{\sqrt{2}}$, for $0 \le \theta \le 2\pi$.

2. The diagram below shows the curve with equation



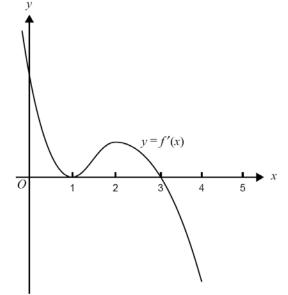
The normal to the curve at A where x = 1 is a tangent to the curve at B.



(iii) Hence, find the area of the shaded region. [2]

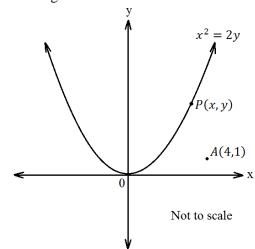
Marks
[2]

3. The diagram below shows the derivative of a function y = f(x). Sketch a possible graph of the function y = f(x).



4.

- (i) Prove that $\cos 3\theta = 4\cos^3 \theta 3\cos \theta$. [2]
- (ii) Hence, or otherwise, solve $\cos 3\theta + \sin 2\theta = \cos \theta$ for $0 \le \theta \le 2\pi$. [3]
- 5. The diagram below shows the graph of the parabola $x^2 = 2y$. The point A(4,1) is outside the parabola while the point P(x, y) is on the parabola as shown in the below diagram.



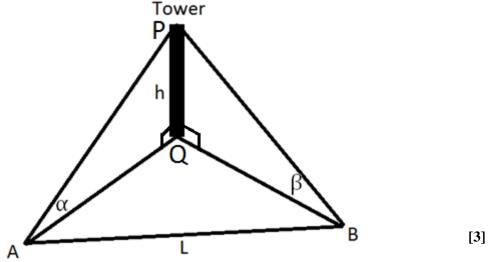
- (i) If D is the distance between the two points A and P, show that [1] $D^{2} = \left(\frac{1}{2}x^{2} - 1\right)^{2} + (x - 4)^{2}$
- (ii) Find the value of x that produces the minimum value for D in the equation in part (i). [3]
- (iii) Determine the minimum distance between *A* and *P* in exact form. [1]

End of Section B

[2]

SECTION C [16 marks]

- 1. If x = c is a double zero of P(x) i.e. $P(x) = (x c)^2 Q(x)$, show that x = c is a zero of P'(x).
- 2. A tower has a height of *h*. At point *A*, the angle of elevation of the top of the tower is α , and at point *B*, the angle of elevation to the top of the tower is β . *AB* is separated by a distance of *L* and $\angle AQB = 60^{\circ}$.



[2]

- (i) Write an expression for *h* in terms of α , β and *L*.
- (ii) If $\tan \alpha \tan \beta = x$ and $(\tan \alpha + \tan \beta)^2 = 3x + x^2$, show that h = L.
- 3.
- (i) Express $\sqrt{3}\cos\theta \sin\theta$ in the form $\operatorname{Rcos}(\theta \alpha)$, where R > 0 [2] and α is an angle in radians.
- (ii) Hence, solve $\sqrt{3}\cos\theta \sin\theta = 1$ for $0 \le \theta \le 2\pi$. [2]
- 4. $P(2p, p^2)$ and $Q(2q, q^2)$ are points on the parabola $x^2 = 4y$. The chord *PQ* always passes through the point *R*(4, 0) when produced.
 - (i) Given the equation of chord PQ is $y = \frac{1}{2}(p+q)x pq$, show that pq = 2(p+q). [1]
 - (ii) M is the midpoint of chord PQ. Find the coordinates of M. [1]
 - (iii) Describe the locus of M, indicating any restrictions on *x* value. [3]

End of Section C

Marks
[2]

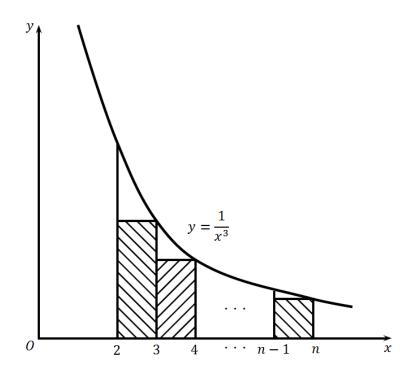
SECTION D [14 marks] 1. Solve $\sin 2\theta - 3\sin^2 \theta + 2\sin \theta = 0$ for $-\pi \le \theta \le \pi$.

2. Solve for x,

$$\frac{x}{1-x^2} \le 0$$

3. Let α and β be the solutions of $x^2 - (a + d)x + ad - bc = 0$ Prove that α^3 and β^3 are the solutions of $x^2 - (a^3 + d^3 + 3abc + 3bcd)x + (ad - bc)^3 = 0$

4. The diagram shows the curve
$$y = \frac{1}{x^3}$$
, for $x > 0$.



(i) Find an expression for the sum of areas of the shaded rectangles [1] between x = 2 and x = n, where *n* is a positive integer.

(ii) Hence, or otherwise, prove that for any positive integer
$$n$$
, [3]
$$1 + \frac{1}{2^3} + \frac{1}{3^3} + \dots + \frac{1}{n^3} < \frac{5}{4}$$

End of Section D End of Exam Marks

[3]

[4]

[3]

	,
SEUTIONA D	
I. B	
2. B	
3. A	
4.A	
5. A	
6. B	
7. D	
8. C	
9. B	
10. KB	
11. $\tan \theta = \sqrt{3}$	
$B = \underline{I} \pm n \overline{L}$ $(n \in J^{\dagger}) \overline{L}$	
12. 19	
	$\hat{\mathbf{A}}$
	ل 4

13. LHS =
$$(\cot \theta + \cot \theta)^{2}$$

$$= \left(\frac{\cos \theta}{\sin \theta} + \frac{1}{\sin \theta}\right)^{2}$$

$$= \left(\frac{\cos \theta + 1}{\sin \theta}\right)^{2}$$

$$= \left(\frac{\cos \theta + 1}{\sin \theta}\right)^{2}$$

$$= \frac{(\cos \theta + 1)^{2}}{-\frac{1}{\sin \theta}^{2}}$$

$$= \frac{1 + \cos \theta}{1 - \cos^{2} \theta}$$

$$= 1 + \cos \theta$$

$$= R + S$$
OR RHS = $\frac{1 + \cos \theta}{1 - \cos \theta} \times \frac{1 + \cos \theta}{1 + \cos \theta}$

$$= \frac{(1 + \cos \theta)^{2}}{1 - \cos^{2} \theta}$$

$$= \frac{1 + 2\cos \theta + \cos^{2} \theta}{-\frac{1 + 2\cos \theta}{\sin^{2} \theta}}$$

$$= \cos e^{-\frac{1}{2} + 2\cos \theta} = \cos t\theta + \cos \theta$$

$$= (wseco + coto)$$
$$= LHS \qquad \boxed{27}$$

Section B - Solutions $1. \cos \Theta = \frac{1}{\sqrt{2}} \quad 0 \le \Theta \le 2\pi$ $\Phi = \frac{1}{4} \circ \frac{1}{4} \qquad (2)$ $2(i) \quad y = \frac{1}{2}(2x^4 - x^3 - 5x^2 + 3x)$ $y' = \frac{1}{2} \left(8x^3 - 3x^2 - 10x + 3 \right)$ $At = 1, y = -\frac{1}{2} \Rightarrow A = (1, -\frac{1}{2})$ At x=1, y'=-1 = gradient of tangent. -: gradient of normal = 1. Eqn of normal at A: $y + \frac{1}{2} = 1(x-1)$, $y = x - \frac{3}{2}$ $\begin{array}{c} (ii) \quad y = \frac{1}{2} \left(2x^{4} - x^{3} - 5x^{2} + 3x \right) \\ y = x - \frac{3}{2} \end{array}$ Sub in in (2) => $\chi - \frac{3}{2} = \frac{1}{2} \left(2\chi - \frac{\chi^{3}}{2} - 5\chi^{2} + 3\chi \right)$ $2x^4 - x^3 - 5x^2 + x + 3 = 0$ Then (x-1)(x+1) is a factor $\Rightarrow x^2-1$ is a factor $2x^2-x-3$ $\frac{x^{2}-1}{2x^{4}-x^{3}-5x^{2}+x+3}}{\frac{2x^{4}-0x^{3}-2x^{2}}{-x^{3}-3x^{2}+x}}$ $-7C^{3}+0x^{2}+3C$ $\ni P(x) = (x-1)(x+1)(2x^2-x-3) = 0$ $= (x-1)(x+1)^{2}(2x-3) = 0$

 $\begin{array}{l} a(ii) \ cont. & Only \ one \ solv \ to \ left \ of \ A \ \Rightarrow x = -1 \\ & \quad \vdots \ B = \left(-1, -5\right) \\ & \quad (3) \end{array}$ $frea = \int \frac{1}{2} \left(2x^{4} - x^{3} - 5x^{2} + 3x \right) - \left(x - \frac{3}{2} \right) dx$ (iii) $= \int_{-1}^{1} \left(2(4 - \frac{1}{2})(^3 - \frac{5}{2})(^2 + \frac{1}{2})(^2 + \frac{1}{2}) dx \right)$ $= \int \frac{x^{5}}{5} - \frac{x^{4}}{8} - \frac{5x^{3}}{6} + \frac{x^{2}}{4} + \frac{3x}{1} \Big|_{-1}^{-1}$ $= \left(\frac{1}{5} - \frac{1}{6} - \frac{5}{6} + \frac{1}{4} + \frac{3}{2}\right) - \left(-\frac{1}{5} - \frac{1}{6} + \frac{5}{6} + \frac{1}{4} + \frac{3}{2}\right)$ 26 or 1.73 units²

- 3. Fisincien Acrean vf/5c) PHIx = 1, x =f(x)=0 => turn pts at 36 O -> change at . . change in concarrily R. >0 Whan -150 flat inc -E(Sc Ø

 $4(i) \frac{4}{\cos 30} = 4\cos^3 0 - 3\cos 0$ cos(20+0)=cos20cos0-m 20m0 $= (2\cos^2 \theta - 1)\cos \theta - 2\sin \theta \cos \theta \sin \theta$ $= \frac{2}{2} \cos^{3} 0 - \cos 0 - 2\cos 0 (1 - \cos^{2} 0)$ $= \frac{2}{2} \cos^{3} 0 - \cos 0 - 2\cos 0 + 2\cos^{3} 0$ $= \frac{4}{2} \cos^{3} 0 - 3\cos 0$ (2)(ii) Solve $\cos 30 + \sin 20 = \cos 0$ for $0 \le 0 \le 2T$ Now $4\cos^3 0 + 2\sin \theta \cos 0 - 4\cos \theta = 0$ from(i) $cos O(4cos^{2} O + 2 oin O - 4) = 0$ $2cos O(2cos^{2} O + nin O - 2) = 0$ $2cos O(2(1 - nin^{2} O) + sin O - 2) = 0$ $2\cos\left(2-2\sin^2\Theta+\sin\Theta-R\right)=0$ $2\cos \Theta \left(\sin \Theta \left(1 - 2\sin \Theta \right) = 0 \right)$ \Rightarrow (0) 0 = 0 or pin 0 = 0 or $pin 0 = \frac{1}{2}$ $Q = \frac{T}{2} \frac{3T}{2}$ or Q = 0, T, 2T or $Q = \frac{T}{5}, \frac{5T}{6}$ $\Rightarrow \phi = \Xi, \Xi, \phi, \pi, 2\pi, \Xi, 5\Xi, \chi$ 3

5. $x^2 = 2y$. $\frac{4a=2}{a=5}$ A (4,1) ext. pt. $\overline{\lambda}$ $AP^{2} = D^{2} = (x - 4)^{2} + (y - 1)^{2}$ P(x,y) -A(4,1). But $y = \frac{x^2}{2}$ $\Rightarrow D^{2} = \left(\frac{x-4}{2} + \frac{2x^{2}}{2} + \frac{2x^{2}}{2}\right)^{2} / \sqrt{2}$ $D^{2} = (x - 4)^{2} + (\frac{1}{2}x^{2} - 1)^{2} + (\frac{1}{2}x^{2} - 1)^{2}$ $\frac{2}{2} = (x - 4)^2 + (\frac{1}{2}x^2 - 1)^2$ Ň $p^{2} = 2(x-4) + 2(\frac{1}{2}x^{2}-1)x$ $2x - 8 + x^3 - 2x$ $\left(p^{2}\right)^{\prime} = \chi^{3} - 8$ $\overline{Far t.p'(p^2)} = 0 \implies \chi^3 = 8$ $x = \pm 2$ $\left(D^2 \right)'' = 3x^2$ al x = 2. = 12 At = 22 = -2 \rightarrow maxa 120)(=-2 to gue min. to i Value of x= 2 $\frac{1}{10} \quad D^2 = (2-1)^2 + (2-1)^2$ $\rightarrow D =$

Section C

(1)

$$P(x) = (x - c)^{2}Q(x)$$

$$P'(x) = 2(x - c)Q(x) + (x - c)^{2}Q'(x)$$

$$P'(x) = (x - c)[2Q(x) + (x - c)Q'(x)]$$

$$P'(c) = (c - c)[2Q(c) + (c - c)Q'(x)]$$

$$P'(c) = 0$$
(2)(i)

$$\tan \alpha = \frac{h}{AQ} \Longrightarrow AQ = \frac{h}{\tan \alpha}$$

$$\tan \beta = \frac{h}{BQ} \Longrightarrow BQ = \frac{h}{\tan \beta}$$

$$L^{2} = AQ^{2} + BQ^{2} - 2AQ \times BQ \cos 60^{\circ}$$

$$L^{2} = \frac{h^{2}}{\tan^{2} \alpha} + \frac{h^{2}}{\tan^{2} \beta} - \frac{h^{2}}{\tan \alpha \tan \beta}$$

$$L^{2} = h^{2} \left[\frac{\tan^{2} \alpha + \tan^{2} \beta}{\tan^{2} \alpha \tan^{2} \beta} - \frac{\tan \alpha \tan \beta}{\tan^{2} \alpha \tan^{2} \beta} \right]$$

$$L^{2} = h^{2} \left[\frac{(\tan \alpha + \tan \beta)^{2} - 3 \tan \alpha \tan \beta}{\tan^{2} \alpha \tan^{2} \beta} \right]$$

$$h = \frac{L \tan \alpha \tan \beta}{\sqrt{(\tan \alpha + \tan \beta)^{2} - 3 \tan \alpha \tan \beta}}$$
(ii)

 $h = \frac{xL}{\sqrt{3x + x^2 - 3x}}$ h = L(3)(i) $R \cos(\theta - \alpha) = R \cos \alpha \cos \theta + R \sin \alpha \sin \theta$ $R \cos \alpha = \sqrt{3}$ $R \sin \alpha = -1$ $R^2 = 4$ R = 2

$$\tan \alpha = -\frac{1}{\sqrt{3}}$$
$$\alpha = \frac{11\pi}{6} \text{ or } -\frac{\pi}{6} 4^{\text{th}} \text{ quadrant}$$
$$2 \cos \left(\theta - \frac{11\pi}{6}\right) \text{ or}$$
$$2 \cos \left(\theta + \frac{\pi}{6}\right)$$

(ii)

$$2\cos\left(\theta - \frac{11\pi}{6}\right) = 1$$

$$\theta - \frac{11\pi}{6} = \cos^{-1}\left(\frac{1}{2}\right) \text{ where } -\frac{11\pi}{6} \le \theta - \frac{11}{6} \le \frac{\pi}{6}$$

$$\theta - \frac{11\pi}{6} = -\frac{\pi}{3}, -\frac{5\pi}{3}$$

$$\theta = \frac{3\pi}{2}, \frac{\pi}{6}$$

(4)(i)

$$y = \frac{1}{2}(p+q)x - pq$$

$$0 = 2(p+q) - pq$$

$$pq = 2(p+q)$$

(ii)

$$M\left(p+q, \frac{p^2+q^2}{2}\right)$$

(iii)

$$x = p+q$$

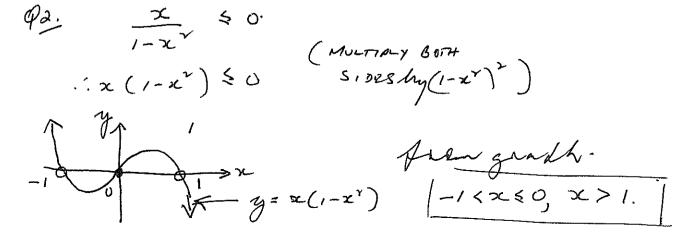
$$y = \frac{(p+q)^2 - 2pq}{2}$$

$$y = \frac{x^2 - 4x}{2}$$

$$y = \frac{x^2 - 4x}{2}$$

Restrictions where $0 \le 4p - p^2$
that is $x \le 0, x \ge 8$

Q1 kin 20-3 pin 0 + 2 ain 0 = 0 , 10151 . 2 kino woo - 3 kin 20 + 2 kind = 0 kino (2 000 - 3 kino +2) = 0 $0 = 0, \pm \pi$ OR $\frac{2(1-t^{*})}{1+t^{*}} - \frac{6t}{1+t^{*}} + 2 = 0$ 2-2t"-6t +2+2t"=0 66 = 4 1 = 2 Di=tan 23 $\therefore \ 0 = 0, \pm \pi, 2 \tan^{-1} \frac{2}{3}$ 6 = 2 tan 2 ~ 1.176.



(1) $1 \times \frac{1}{3^3} + 1 \times \frac{1}{4^3} + 1 \times \frac{1}{5^3} + - \cdot + 1 \times \frac{1}{5^3} = 0$ $\begin{bmatrix} OR & \sum_{r=3}^{L} \\ r=3 \end{bmatrix}$ $\binom{11}{3^3} \binom{1}{4^3} \binom{1}{5^3} + \frac{1}{3^3} + \frac{1}{3$ $= \int \frac{-1}{2\pi r^2} \int \frac{1}{r^2}$ $= -\frac{1}{2m} + \frac{1}{2^3}.$ = 1 - 1 - 1. $\frac{1}{2^{3}} + \frac{1}{3^{3}} + \frac{1}{4^{3}} + \frac{1}{2^{3}} + \frac{1}{3^{3}} + \frac{1}{3^{3}} + \frac{1}{2^{3}} +$ = 5 - 1 ~